

ENGINEERING PHYSICS II.

Earth Science Engineering MSc / Geophysical Engineering specialization

2021/2022 2. Semester

COURSE COMMUNICATION FOLDER

University of Miskolc Faculty of Earth Science and Engineering Institute of Geophysics and Geoinformatics

Course datasheet

Course Title: Engineering physics II.	Neptun code: MEGET720011	
Responsible instructor (name, position, scientific	Responsible department/institute:	
degree): Dr. Dobróka Mihály, professor emeritus.	Institute of Geophysics and Geoinformatics /	
Dr. Fancsik Tamás, associate professor	Department of Geophysics	
	Type of course: C	
Position in Curriculum (which semester): 2	Pre-requisites (if any): MFGFT7100011	
Number of Contact Hours per Week (lec.+prac.):	Type of Assessment (examination / practical mark /	
1+1	other): practical mark	
Credits: 2	Course: full-time	
	Program: Earth Science Engineering MSc /	
	Geophysical Engineering	
Course Description:		
Within the framework of the Geophysical Engineering MSc program, the students gain the deepening		
knowledge in those fields of the electrodynamics, whi	ch are the necessary to understand deeper the geological	
processes and geophysical methods.		
Competencies to evolve:		
Knowledge: T1, T2		
Ability: -		
Attitude: A3, A4, A5, A7		
Autonomy and responsibility: F1, F2, F3, F4, F5		
The short curriculum of the subject:		
The main chapters of the subject basic equations of t	he electromagnetic field material equations the special	
phenomena of the electromagnetic field. The electron	he electromagnetic field, material equations, the special	
density Introduction of the electromagnetic parameter	rs based on continuum physics. Maxwell's equations in	
integral and differential forms. Special electromagnet	ic phenomena and their conditions. Completeness of the	
Maxwell's equations Introduction of the electromagnet	etic potentials potential equations. Scale transformation	
Lorentz condition. Solutions of potential equations, r	etarded potential. The homogeneous wave equation and	
its major solutions. Electromagnetic potentials in	o conductors. Electromagnetic wave propagation in	
homogeneous, isotropic, infinite insulators and cor	ductors. Telegraphs equations. Electromagnetic wave	
propagation on the boundary of an infinite conductor	half-space. Properties of electromagnetic wave fields in	
infinite insulator in case of electrical dipole. Propertie	es of electromagnetic wave fields in infinite insulator in	
case of magnetic dipole. Wave propagation in w	eakly inhomogeneous space, eikonal equation. Wave	
propagation in weakly inhomogeneous space, WKB m	ethod.	
Assessment and grading:		
Attendance at lectures is regulated by the university	code of education and examination and two individual	
assignments during the semester are the requirements of	of signature.	
Exam grading scale: unsatisfactory (0-45%), satisf	factory (46-60%), medium (61-70%), good (71-85%),	
excellent (86-100%).		
The 3-5 most important compulsory, or recommend	led literature (textbook, book) resources:	
L. D. Landau, E. H. Lifshitz (1976) Course of Theore	tical Physics Volume 2. The Classical Theory of Fields.	
Pergamon Press		
Dobróka M. (2017): Engineering physics 2 (.pdf) univ	ersity text book	
M. Zhdanov (2009) Geophysical Electromagnetic Theory and Methods, Volume 43. Elsevier Science		
M. Dobróka (1984) Love seam-waves in an inhomogeneous 3-layered medium. Geophysical Transactions Vol.		
30. No. 3. 237-251.		
M. Dobróka (1975) Small amplitude hydromagnetic waves in wave-guides, treated by generalized polytropic		
equations of state. Plasma Physics, Vol. 17. 1171-1172		

Syllabus of the semester

Week	Lecture
February 8.	The electrodynamics as continuum theory, definition of the charge density.
February 15.	Introduction of the electromagnetic parameters based on continuum physics. Maxwell's equations in integral and differential forms.
February 22.	Special electromagnetic phenomena and their conditions, electrostatics and magnetostatics, special phenomena and their conditions, field of stationary and quasi-stationary current.
March 1.	Completeness of the Maxwell's equations. Introduction of the electromagnetic potentials, potential equations. Scale transformation.
March 8.	Solutions of potential equations, retarded potential. The homogeneous wave equation and its major solutions.
March 15.	No education
March 22.	1 st mid-term test.
March 29.	Electromagnetic potentials in conductors, telegraph equations. Electromagnetic wave propagation in homogeneous, isotropic, infinite insulators.
April 5.	Electromagnetic wave propagation in homogeneous, isotropic, infinite conductors. Skin-effect. Electromagnetic waves propagation on the boundary of an infinite conductor half-space.
April 12.	Professional day
April 19.	No education
April 26.	Properties of electromagnetic wave fields in infinite insulator in case of electrical dipole. Properties of electromagnetic wave fields in infinite insulator in case of magnetic dipole.
May 3.	Wave propagation in weakly inhomogeneous space, eikonal equation, WKB method.
May 10.	2nd mid-term test.

Week	Seminar
February 8.	The electrodynamics as continuum theory, continuum mechanical similarities, definition of the charge density and density of dipole moment.
February 15.	Maxwell's equations in integral and differential forms – repeating of the deductions, exercise of the derivative operators.
February 22.	Special electromagnetic phenomena and their conditions, electrostatics and magnetostatics, special phenomena and their conditions, field of stationary and quasi-stationary current – exercise of the deductions.
March 1.	Completeness of the Maxwell's equations. Persistency of charge as an independent law of nature.
March 8.	Introduction of the electromagnetic potentials, potential equations. Scale transformation. Lorentz condition. Solutions of potential equations, retarded potential. The homogeneous wave equation and its major solutions Exercise of the deductions.
March 15.	No education
March 22.	1 st mid-term test.
March 29.	Electromagnetic potentials in conductors, telegraph equations. Exercises, examples. Electromagnetic wave propagation in homogeneous, isotropic, infinite insulators. Exercise of deductions. Deepening of the knowledge. Examples.
April 5.	Electromagnetic wave propagation in homogeneous, isotropic, infinite conductors. Skin-effect. Exercise of deductions. Deepening of the knowledge. Examples. Electromagnetic waves propagation on the boundary of an infinite conductor half- space. Exercise of deductions. Deepening of the knowledge, Examples.
April 12.	Professional day
April 19.	No education
April 26.	Properties of electromagnetic wave fields in infinite insulator in case of electrical dipole. Exercise of deductions. Deepening of the knowledge. Examples. Properties of electromagnetic wave fields in infinite insulator in case of magnetic dipole. Exercise of deductions. Deepening of the knowledge. Examples.
May 3.	Wave propagation in weakly inhomogeneous space, eikonal equation. and WKB method. Examples. Relationship with the Snellius-Descartes law.
May 10.	2 nd mid-term test.

Sample for the mid-term exam

Please, write down the differential forms of Maxwell's equations and introduce the electromagnetic potentials by application of scale transformation.

The solution can be found in the university text book "Engineering physics II".